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Abstract: We give a new and conceptually simple approach to obtain the “first law of

black hole thermodynamics” from a basic thermodynamical property that entropy (S) for

any stationary black hole is a state function implying that dS must be an exact differ-

ential. Using this property we obtain some conditions which are analogous to Maxwell’s

relations in ordinary thermodynamics. From these conditions we are able to explicitly cal-

culate the semiclassical Bekenstein-Hawking entropy, considering the most general metric

represented by the Kerr-Newman spacetime. We extend our method to find the corrected

entropy of stationary black holes in (3+1) dimensions. For that we first calculate the cor-

rected Hawking temperature considering both scalar particle and fermion tunneling beyond

the semiclassical approximation. Using this corrected Hawking temperature we compute

the corrected entropy, based on properties of exact differentials. The connection of the

coefficient of the leading (logarithmic) correction with the trace anomaly of the stress ten-

sor is established. We explicitly calculate this coefficient for stationary black holes with

various metrics, emphasising the role of Komar integrals.

Keywords: Black Holes, Classical Theories of Gravity

c© SISSA 2009 doi:10.1088/1126-6708/2009/05/063

mailto:rabin@bose.res.in
mailto:sujoy@bose.res.in
http://dx.doi.org/10.1088/1126-6708/2009/05/063


J
H
E
P
0
5
(
2
0
0
9
)
0
6
3

Contents

1 Introduction 1

2 Exact differential and semiclassical area law 3

3 Correction to semiclassical Hawking temperature 7

3.1 Scalar particle tunneling 8

3.2 Fermion tunneling 12

4 Exact differential and corrected area law 14

5 Determination of the leading correction to entropy by trace anomaly 18

5.1 Schwarzschild black hole 20

5.2 Reissner-Nordstrom black hole 21

5.3 Kerr black hole 22

5.4 Kerr-Newman black hole 23

6 Conclusions 24

A Glossary of formulae for Kerr-Newman black hole 26

B Komar conserved quantities 27

1 Introduction

Black holes are one of the most fascinating parts of theoretical, astrophysical and cosmolog-

ical physics ever since Einstein’s discovery of the theory of general relativity of gravitation.

They are very important members of the universe. Because of their huge gravitational

force no objects, not even light, can escape from them. There exists a region called ‘event

horizon’ beyond which all objects are strongly attracted towards the centre of a black hole

leaving absolutely no chance for them to crossover the event horizon to the outer region. So

they are completely isolated from the rest of the universe and have absolute zero tempera-

ture. However this is one part of black hole physics where everything is treated classically,

but one has to check what happens when quantum effects are taken into account.

The inspiration of incorporating quantum theory for black holes is present within

classical gravity itself. The four laws of “black hole mechanics” derived by Bardeen, Carter,

Hawking [1] are closely similar to the “laws of thermodynamics” if black holes are allowed

to have some temperature. Around the same time of the above work, Bekenstein argued

for black hole entropy based on simple aspects of thermodynamics [2] which require that
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entropy of the universe cannot decrease due to the capture of any object by black holes.

For making the total entropy of the universe at least unchanged, a black hole should gain

the same amount of entropy which is lost from the rest of the universe. Bekenstein then

gave some heuristic arguments to show that black hole entropy must be proportional to

its horizon area. He also fixed the proportionality constant as ln2
8π . The idea of Bekenstien

was given a solid mathematical ground when Hawking incorporated quantum fields moving

in a background of classical gravity and showed that black holes do emit particles having

a black body spectrum with physical temperature ~κ
2π , where κ is the surface gravity of a

black hole [3]. Knowing this expression of black hole temperature (“Hawking temperature”)

one can make an analogy with the ‘first law of black hole mechanics’ and the ‘first law of

thermodynamics’ to identify entropy as S = A
4 , where A is the horizon area of the black

hole. Thus it was proven that Bekenstein’s constant of proportionality was incorrect and

the new proportionality constant is 1
4 . The work of Bekenstein and Hawking thereby leads

to the semiclassical result for black hole entropy encapsuled by the Bekenstein-Hawking

area law, given by

SBH =
A

4
. (1.1)

Thereafter a lot of effort has been made for studying thermodynamic aspects of black

holes. Indeed there are several approaches to calculate Hawking temperature and entropy

of a black hole. Among these a simple and physically intuitive picture is provided by the

tunneling mechanism [4–7]. It has two variants namely null geodesic method [4, 5] and

Hamilton-Jacobi method [6, 7]. Recently in [8], Hawking flux from the tunneling mechanism

has been derived which shows that black holes have perfect black body spectrum with the

correct Hawking temperature. In tunneling method pair creation occurs just inside the

event horizon where one mode moves towards the centre of the black hole while the other

mode just tunnels through the event horizon to the outer region and reaches infinity.

Besides temperature, there have been various studies related to the obtention of en-

tropy. Although till now there is no microscopic description of black hole entropy, several

approaches have shown that the semiclassical Bekenstein-Hawking entropy (1.1) under-

goes corrections. These approaches are mainly based on field theory [9], quantum geome-

try [10], statistical mechanics [11], Cardy formula [12], brick wall method [13] and tunneling

method [14–17]. But none of these is successful to include all the black hole spacetimes.

In this paper we construct a different framework for studying entropy using a basic

property of ordinary thermodynamics that ensures entropy (S) must be a state function.

This naturally yields the ‘first law of black hole thermodynamics’ where one does not need

the first law of black hole mechanics. The fact that dS is an exact differential gives three

integrability conditions which are analogous to Maxwell’s equations in ordinary thermody-

namics. Unlike the usual approach where the Bekenstein-Hawking entropy is read-off by a

comparison of the first law of thermodynamics with the first law of black hole mechanics,

we are able to directly calculate the entropy by taking all work terms into consideration.

It is revealed that although the work terms have some role to play in between, they do not

contribute to the final result for the semiclassical Bekenstein-Hawking entropy. Our anal-

ysis is performed for a general black hole defined by the Kerr-Newman metric. The main
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strength of our approach, however, lies in finding the corrections to the semiclassical value

of entropy. For this we first calculate corrections to semiclassical Hawking temperature us-

ing both scalar particle and fermion tunneling in the Kerr-Newman spacetime. Equivalent

results are obtained. We also find that the corrected Hawking temperature, as calculated

by tunneling mechanism, has several arbitrary coefficients. We determine these coefficients

by demanding that the corrected entropy (Sbh) of a stationary black hole also has to be

a state function. The integrability conditions (analog to Maxwell’s relations) on dSbh fix

most of the coefficients. Then following the usual technique to solve an exact differential

equation, we calculate the corrected entropy for the Kerr-Newman black hole. In the lim-

iting case the whole analysis is valid to give the corrected entropy for other black holes,

as for example (i) Kerr, (ii) Reissner-Nordstrom and (iii) Schwarzschild black hole. The

general form of the corrected entropy includes logarithmic terms and inverse area terms as

leading and next to leading order corrections. However in the expression of the corrected

entropy, there is one arbitrary coefficient present with each correctional term.

The remainder of this paper then deals with fixing the coefficient (β̃1) of the logarithmic

term. We successfully fix this coefficient for all spacetimes. It is related to the trace

anomaly of the stress tensor. The concept of Komar conserved quantity corresponding to

a Killing vector plays a crucial role for the explicit calculation of β̃1. We consider various

stationary black hole spacetimes in (3+1) dimensions and perform an integration over the

trace anomaly to give the final result for β̃1. From our analysis it is revealed that β̃1 is a

pure number for both Schwarzschild and Kerr spacetime and, more importantly, the values

are exactly equal. This is consistent since there is no difference in the dynamics for these

two black holes as they only differ in their geometrical behaviour. For the other two charged

black holes (Reissner-Nordstrom and Kerr-Newman) β̃1 is not a pure number but in the

limit Q = 0 they reproduce the result for Schwarzschild and Kerr black holes respectively.

The paper is organised as follows. In section 2 we deduce the ‘first law of black hole

thermodynamics’ from a different viewpoint by considering entropy as a state function

and calculate the semiclassical Bekenstein-Hawking entropy for stationary black holes. In

section 3 both scalar particle and fermion tunneling is used to calculate the corrected

Hawking temperature. Section 4 is devoted to find the general form of a corrected area law

which is valid for all stationary spacetimes in (3+1) dimensions. In section 5 the coefficient

of the leading (logarithmic) correction to the area law is fixed. Section 6 is left for our

conclusions and discussions. We give our notations and definitions in two appendices which

includes a very brief review of Komar conserved quantities.

2 Exact differential and semiclassical area law

Long time back (1973) within the realm of classical general relativity Bardeen, Carter and

Hawking gave the “first law of black hole mechanics” which states that for two nearby

black hole solutions the difference in mass (M), area (A) and angular momentum (J) must

be related by [1]

δM =
1

8π
κδA + ΩHδJ. (2.1)
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In addition some more terms can appear on the right hand side due to the presence of

other matter fields. They found this analogous to the “first law of thermodynamics”,

which states, the difference in energy (E), entropy (S) and other state parameters of two

nearby thermal equilibrium states of a system is given by

dE = TdS + “work terms”. (2.2)

Therefore even in classical general relativity the result (2.1) is appealing due to the fact that

both E and M represent the same physical quantity, namely total energy of the system.

Although at that time this result was quite surprising as classically, temperature of black

holes was absolute zero. So the identification of temperature with surface gravity, as shown

by (2.1) and (2.2), was meaningless. Consequently, identification of entropy with horizon

area was inconsistent.

However the picture was changed dramatically when Hawking (1975), incorporating

quantum effects, discovered [3] that black holes do radiate all kinds of particles with a

perfect black body spectrum with temperature TH = κ
2π . From this mathematical identi-

fication of the Hawking temperature (TH) with the surface gravity (κ) in (2.1), one is left

with some analogy between entropy (S) and the area of the event horizon(A), suggested

by (2.1) and (2.2). The result S = A
4 follows from this analogy.

For such an identification, the horizon area of a black hole is playing the “mathematical

role” of entropy and does not have a solid physical ground. Also, this naive identification

remains completely silent about the role of “work terms”. But if one does not use this

mathematical analogy, rather tries to calculate entropy, it may appear that these work

terms might have some role to play. Therefore the role of these work terms is not trans-

parent in the process of identifying entropy. Moreover, in this analysis one can obtain

the “first law of black hole thermodynamics” only by deriving the “first law of black hole

mechanics” and then identifying this with the ordinary “first law of thermodynamics”.

Now we want to obtain the “first law of black hole thermodynamics” by directly starting

from the thermodynamical viewpoint where one does not require the “first law of black hole

mechanics”. From such a law the entropy will be explicitly calculated and not identified,

as usually done, by an analogy between (2.1) and (2.2). For this derivation we interpret

Hawking’s result of black hole radiation [3] as

• black holes are thermodynamical objects having mass (M) as total energy (E) and

they are immersed in a thermal bath in equilibrium with physical temperature (TH).

Therefore following the ordinary “first law of thermodynamics” we are allowed to write the

“first law of black hole thermodynamics” as

dM = THdS + “work terms on black hole”, (2.3)

where M is the mass of the black hole and TH is the Hawking temperature. Usually,

without deriving the “first law of black hole mechanics” one is not able to find “work terms

on black hole” exactly. But we can always make a dimensional analysis to construct these

two terms as proportional to ΩHdJ and ΦHdQ where J and Q are the angular momentum
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and charge of the black hole. This is possible since the form of “angular velocity (ΩH)”

and “potential (ΦH)” at the event horizon are known individually from classical gravity.

These terms can be brought on the right hand side of (2.3) with some prefactors given by

dimensionless constants ‘a’ and ‘b’, such that (2.3) becomes

dM = THdS + aΩHdJ + bΦHdQ. (2.4)

To fix the arbitrary constants ‘a’ and ‘b’ let us first rewrite (2.4) in the form

dS =
dM

TH
+

(

−aΩH

TH

)

dJ +

(

−bΦH

TH

)

dQ (2.5)

From the principle of ordinary first law of thermodynamics one must interpret entropy

as a state function. For the evolution of a system from one equilibrium state to another

equilibrium state, entropy does not depend on the details of the evolution process, but only

on the two extreme points representing the equilibrium states. This universal property of

entropy must be satisfied for black holes as well. In fact the entropy of any stationary

black hole should not depend on the precise knowledge of its collapse geometry but only

on the final equilibrium state. Hence we can conclude that entropy for a stationary black

hole is a state function and consequently dS has to be an exact differential. As a result the

coefficients of the right hand side of (2.5) must satisfy the three integrability conditions

∂

∂J

(

1

TH

)∣

∣

∣

∣

M,Q

=
∂

∂M

(

−aΩH

TH

)∣

∣

∣

∣

J,Q

∂

∂Q

(

−aΩH

TH

)∣

∣

∣

∣

M,J

=
∂

∂J

(

−bΦH

TH

)∣

∣

∣

∣

M,Q

∂

∂M

(

−bΦH

TH

)∣

∣

∣

∣

J,Q

=
∂

∂Q

(

1

TH

)∣

∣

∣

∣

J,M

. (2.6)

As one can see, these relations are playing a role similar to Maxwell’s relations of ordinary

thermodynamics. Like Maxwell’s relations these three equations do not refer to a process

but provide relationships between certain physical quantities that must hold at equilibrium.

The only known stationary solution of Einstein-Maxwell equation with all three pa-

rameters, namely Mass (M), Charge(Q) and Angular momentum (J) is given by the Kerr-

Newman spacetime. All the necessary information for that metric is provided in appendix A

and one can readily check that the first, second and third conditions are satisfied only for

a = 1, a = b and b = 1 respectively, leading to the unique solution a = b = 1. As a

result, (2.4) immediately reduces to the standard form

dM = THdS + ΩHdJ + ΦHdQ, (2.7)

This completes the obtention of the “first law of black hole thermodynamics”, for a rotating

and charged black hole, without using the “first law of black hole mechanics”.

One can make an analogy of (2.7) with the standard first law of thermodynamics given

by dE = TdS − pdV + µdN . Knowing E = M (since both represent the same quantity

which is the energy of the system) one can infer the correspondence −ΩH → p, J →

– 5 –
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V, ΦH → µ, Q → N between the above two cases. Indeed ΩHdJ is the work done on

the black hole due to rotation and is the exact analogue of the −pdV term. Likewise the

electrostatic potential ΦH plays the role of the chemical potential µ.

It is now feasible to calculate the entropy by using properties of exact differentials.

The first step is to rewrite (2.7) as

dS =
dM

TH
+

(−ΩH

TH

)

dJ +

(−ΦH

TH

)

dQ, (2.8)

where dS is now an exact differential.

Any first order partial differential equation

df(x, y, z) = U(x, y, z)dx + V (x, y, z)dy +W (x, y, z)dz (2.9)

is exact if it fulfills these integrability conditions

∂U

∂y

∣

∣

∣

∣

x,z

=
∂V

∂x

∣

∣

∣

∣

y,z

;
∂V

∂z

∣

∣

∣

∣

x,y

=
∂W

∂y

∣

∣

∣

∣

x,z

;
∂W

∂x

∣

∣

∣

∣

y,z

=
∂U

∂z

∣

∣

∣

∣

x,y

. (2.10)

If these three conditions hold then the solution of (2.9) is given by

f(x, y, z) =

∫

Udx+

∫

Xdy +

∫

Y dz, (2.11)

where

X = V − ∂

∂y

∫

Udx (2.12)

and

Y = W − ∂

∂z

[
∫

Udx+

∫

Xdy

]

. (2.13)

Now comparing (2.8) and (2.9) we find the following dictionary

(f → S, x→M, y → J, z → Q)
(

U → 1

TH
, V → −ΩH

TH
, W → −ΦH

TH

)

. (2.14)

Using this dictionary and (2.11), (2.12) and (2.13) one finds,

S =

∫

dM

TH
+

∫

XdJ +

∫

Y dQ, (2.15)

where

X =

(

−ΩH

TH

)

− ∂

∂J

∫

dM

TH
(2.16)

and

Y =

(

−ΦH

TH

)

− ∂

∂Q

[∫

dM

TH
+

∫

XdJ

]

. (2.17)
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In order to calculate the semiclassical entropy we need to solve (2.15), (2.16) and (2.17).

Note that all the “work terms” are appearing in the general expression of the semiclassical

entropy of a black hole (2.15). Let us first perform the mass integral to get

∫

dM

TH
=
π

~

(

2M

[

M +

(

M2 − J2

M2
−Q2

)1/2
]

−Q2

)

, (2.18)

where the expression (A.8) has been substituted for T−1
H . With this result one can check

the following equality
∂

∂J

∫

dM

TH
= −ΩH

TH
(2.19)

holds, where ΩH is defined in (A.4). Putting this in (2.16) it follows that X = 0. Us-

ing (2.18) one can next calculate,

∂

∂Q

∫

dM

TH
= −ΦH

TH
, (2.20)

where −ΦH

TH
is given in (A.10). With this equality and the fact that X = 0, we find,

using (2.17), Y = 0. Exploiting all of the above results, the semiclassical entropy for

Kerr-Newman black hole is found to be,

S =

∫

dM

TH
=
π

~

(

2M

[

M +

(

M2 − J2

M2
−Q2

)1/2
]

−Q2

)

=
A

4~
= SBH, (2.21)

which is the standard semiclassical Bekenstein-Hawking area law for Kerr-Newman black

hole. The expression for the area (A) of the event horizon follows from (A.6). Now it

is trivial, as one can check, that all other stationary spacetime solutions, for example

Kerr or Reissner-Nordstrom, also fit into the general framework to give the semiclassical

Bekenstein-Hawking area law. Thus the universality of the approach is justified.

3 Correction to semiclassical Hawking temperature

For convenience of our analysis let us first rewrite the original Kerr-Newman metric (given

in appendix A) in the following form,

ds2 = −F (r, θ)dt2 +
dr2

g̃(r, θ)
+K(r, θ)

(

dφ− H(r, θ)

K(r, θ)
dt

)2

+ Σ(r)dθ2, (3.1)

F (r, θ) = f̃(r, θ) +
H2(r, θ)

K(r, θ)
=

∆(r)Σ(r, θ)

(r2 + a2)2 − ∆(r)a2 sin2 θ

In course of finding the correction to the semiclassical Hawking temperature we follow the

method developed in [15]. Therefore the first aim is to isolate the ‘r − t’ sector of the

metric (3.1) from the angular part. In a previous analysis for rotating BTZ black hole

we did a similar work [16]. The idea is to take the near horizon form of the metric and

thereby redefine the angular part in such a way that the r − t sector becomes isolated.

This redefinition only changes the total energy of the tunneling particle [16, 18, 19] and
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does not affect the thermodynamical entities. In the case of Kerr-Newman black hole this

issue is little more subtle since the metric coefficients also depend on θ. However, because

of the presence of an ergosphere, f̃(r, θ) in (A.1) is positive on the horizon for two specific

values of θ, say, θ0 = 0 or π. For these two values of θ the ergosphere and the event horizon

coincide. For the tunneling of any particle through the horizon of the Kerr-Newman black

hole only these two specific values of θ are allowed. When we take the near horizon limit of

the metric (3.1) the value of θ is first fixed to θ0. The form of the metric near the horizon

for fixed θ = θ0 is given by [18],

ds2 = −F ′(r+, θ0)(r− r+)dt2 +
dr2

g̃′(r+, θ0)(r − r+)
+K(r+, θ0)

(

dφ− H(r+, θ0)

K(r+, θ0)
dt

)2

(3.2)

where,
H(r+, θ)

K(r+, θ)
=

a

r2+ + a2
= ΩH (3.3)

is the angular velocity of the event horizon. A coordinate transformation

dχ = dφ− ΩHdt =⇒ χ = φ− ΩHt (3.4)

will take the metric (3.2) into the desired form,

ds2 = −F ′(r+, θ0)(r − r+)dt2 +
dr2

g̃′(r+, θ0)(r − r+)
+K(r+, θ0)dχ

2, (3.5)

where the ‘r − t’ sector is isolated from the angular part dχ2. Note that the ‘r − t’ sector

of the metric (3.5) has the form,

ds2 = −f(r)dt2 +
1

g(r)
dr2, (3.6)

where

f(r) = F ′(r+, θ0)(r − r+)

g(r) = g̃′(r+, θ0)(r − r+). (3.7)

3.1 Scalar particle tunneling

The massless particle in spacetime (3.5) is governed by the Klein-Gordon equation

− ~
2

√−g∂µ

[

gµν√−g∂ν

]

Φ = 0. (3.8)

In the tunneling approach we are concerned about the radial trajectory, so that only the

r− t sector (3.6) of the metric (3.5) is relevant. Note that in the analysis given in [15], for

a Schwarzschild black hole, the structure of the ‘r − t’ sector was similar to (3.6). But it

should be remembered that now we are dealing with a black hole having three parameters

(M,Q, J). As a consequence a major difference will appear later on.

– 8 –
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Equation (3.8), with the background metric (3.6) cannot be solved exactly. Therefore

we start with the following standard WKB ansatz for Φ as

Φ(r, t) = exp

[

i

~
S(r.t)

]

, (3.9)

and substitute it in (3.8) to yield,

i
√

f(r)g(r)

(

∂S

∂t

)2

− i
√

f(r)g(r)

(

∂S

∂r

)2

− ~
√

f(r)g(r)

∂2S

∂t2
+ ~

√

f(r)g(r)
∂2S

∂r2

+
~

2

(

∂f(r)

∂r

√

g(r)

f(r)
+
∂g(r)

∂r

√

f(r)

g(r)

)

∂S

∂r
= 0. (3.10)

Then expanding the action S(r, t) in the powers of ~

S(r, t) = S0(r, t) +
∑

i

~
iSi(r, t), (3.11)

and putting this in (3.10) one gets a set of differential equations for different order of ~

and those can be simplified to obtain,

~
0 :

∂S0

∂t
= ±

√

f(r)g(r)
∂S0

∂r
, (3.12)

~
1 :

∂S1

∂t
= ±

√

f(r)g(r)
∂S1

∂r
,

~
2 :

∂S2

∂t
= ±

√

f(r)g(r)
∂S2

∂r
,

. . . .

and so on. Note that the n-th order solution is expressed by,

∂Sn

∂t
= ±

√

f(r)g(r)
∂Sn

∂r
, (3.13)

where (n = 0, i; i = 1, 2, . . .).

The most general form of semiclassical action in the original Kerr-Newman spacetime

is given by

S0(r, t, θ, φ) = −Et+ Pφφ+ S̃0(r, θ), (3.14)

where E and Pφ are the Komar conserved quantities [20] (see appendix B) corresponding

to the two Killing vectors ∂t and ∂φ. In the near horizon approximation for fixed θ = θ0
and using (3.4) one can isolate the semiclassical action for the ‘r − t’ sector as,

S0(r, t) = −ωt+ S̃0(r), (3.15)

where

ω = (E − PφΩH) (3.16)

is identified as the total energy of the tunneling particle. The solution for other Si(r, t)’

s, subjected to a choice similar to (3.15), can at best differ by a proportionality factor,

– 9 –



J
H
E
P
0
5
(
2
0
0
9
)
0
6
3

since they satisfy generically identical equations as (3.13). The most general form of action

including the contribution from all orders of ~ is then given by [15–17]

S(r, t) =
(

1 +
∑

γi~
i
)

S0(r, t), (3.17)

It is clear that the dimension of γi is equal to the dimension of ~
−i. Let us now perform the

following dimensional analysis to express these γi’ s in terms of dimensionless constants.

In (3+1) dimensions in the unit of G = c = κB = 1
4πǫ0

= 1,
√

~ is proportional to Plank

length (lp), Plank mass (mp) and Plank charge (qp).
1 Therefore the most general term

which has the dimension of ~ can be expressed in terms of black hole parameters as

HKN(M,J,Q) = a1r
2
+ + a2Mr+ + a3M

2 + a4r+Q+ a5MQ+ a6Q
2. (3.18)

Using this the action in (3.17) now takes the form

S(r, t) =

(

1 +
∑ βi~

i

H i
KN

)

S0(r, t). (3.19)

where βi’s are dimensionless constants.

To find the solution for S0(r, t), let us put (3.15) in the first partial differential equation

in (3.12) and integrate to obtain

S̃0(r) = ±ω
∫

C

dr
√

f(r)g(r)
(3.20)

The + (-) sign indicates that the particle is outgoing (ingoing). Using the expression for

S0(r, t) from (3.15) and (3.20) one can write (3.19) as

S(r, t) =

(

1 +
∑ βi~

i

H i
KN

)

(

−ωt± ω

∫

C

dr
√

f(r)g(r)

)

. (3.21)

The solution for the ingoing and outgoing particle of the Klein-Gordon equation under the

background metric (3.6) follows from (3.9),

Φin = exp

[

i

~

(

1 +
∑

i

βi
~

i

H i
KN

)(

−ωt− ω

∫

C

dr
√

f(r)g(r)

)]

(3.22)

and

Φout = exp

[

i

~

(

1 +
∑

i

βi
~

i

H i
KN

)(

−ωt+ ω

∫

C

dr
√

f(r)g(r)

)]

. (3.23)

The paths for the ingoing and outgoing particle crossing the event horizon are not same.

The ingoing particle can cross the event horizon classically, whereas, the outgoing particle

trajectory is classically forbidden. The metric coefficients for ‘r− t’ sector alter sign at the

1lp =
q

~G

c3
, mp =

q

~c
G

, qp =
√

c~4πǫ0.
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two sides of the event horizon. Therefore, the path in which tunneling takes place has an

imaginary time coordinate (Im t). The ingoing and outgoing probabilities are now given by,

Pin = |Φin|2 = exp

[

−2

~

(

1 +
∑

i

βi
~

i

H i
KN

)(

−ωIm t− ωIm

∫

C

dr
√

f(r)g(r)

)]

(3.24)

and

Pout = |Φout|2 = exp

[

−2

~

(

1 +
∑

i

βi
~

i

H i
KN

)(

−ωIm t+ ωIm

∫

C

dr
√

f(r)g(r)

)]

. (3.25)

Since in the classical limit (~ → 0) Pin is unity, one has,

Im t = −Im

∫

C

dr
√

f(r)g(r)
. (3.26)

The presence of this imaginary time component is in agreement with [21, 22], where

it is shown that for the Schwarzschild black hole if one connects the two patches (in

Kruskal-Szekeres coordinates) exterior and interior to the event horizon, there is a con-

tribution coming from the imaginary time coordinate. The value of this contribution

is 2πiM which exactly coincides with (3.26) evaluated for the Schwarzschild case with

f(r) = g(r) = (1 − 2M
r ) [22].

As a result the outgoing probability for the tunneling particle becomes,

Pout = exp

[

−4

~
ω

(

1 +
∑

i

βi
~

i

H i
KN

)

Im

∫

C

dr
√

f(r)g(r)

]

. (3.27)

The principle of “detailed balance” [6] for the ingoing and outgoing probabilities states that,

Pout = exp

(

− ω

Tbh

)

Pin = exp

(

− ω

Tbh

)

(3.28)

Comparing (3.27) and (3.28) the corrected Hawking temperature for the Kerr-Newman

black hole is given by

Tbh = TH

(

1 +
∑

i

βi
~

i

H i
KN

)−1

, (3.29)

where

TH =
~

4

(

Im

∫

C

dr
√

f(r)g(r)

)−1

(3.30)

is the semiclassical Hawking temperature. Using the expressions of f(r) and g(r) form (3.7)

it follows that,

TH =
~
√

F ′(r+, θ0)g′(r+, θ0)

4π
=

~

2π

(r+ −M)

(r2+ + a2)
, (3.31)

which is the familiar result for the semiclassical Hawking temperature for the Kerr-Newman

black hole.
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3.2 Fermion tunneling

In this section we discuss Hawking effect through the tunneling of fermions. Although

a reasonable literature exists for the computation of the semiclassical Hawking temper-

ature [23–25], there is no analysis on possible corrections, for a general metric, within

this framework. There is a paper [25] which discusses such corrections but only for the

Schwarzschild metric. Here we shall do the analysis for the tunneling of massless fermions

from the Kerr-Newman spacetime and reproduce the expressions (3.29) and (3.31) which

were obtained for a scalar particle tunneling.

The Dirac equation for massless fermions is given by

iγµDµψ = 0, (3.32)

where the covariant derivative is defined as,

Dµ = ∂µ +
1

2
iΓα β

µ Σαβ

Γα β
µ = gβνΓα

µν (3.33)

and

Σαβ =
1

4
i [γα, γβ ] (3.34)

The γµ matrices satisfy the anticommutation relation {γµ, γν} = 2gµν × 1.

We are concerned only with the radial trajectory and for this it is useful to work with

the metric (3.6). Using this one can write (3.32) as

iγµ∂µψ − 1

2

(

gttγµΓr
µt − grrγµΓt

µr

)

Σrtψ = 0 (3.35)

The nonvanishing connections which contribute to the resulting equation are

Γr
tt =

f ′g

2
; Γt

tr =
f ′

2f
. (3.36)

Let us define the γ matrices for the ‘r − t’ sector as

γt =
1

√

f(r)
γ0, γr =

√

g(r)γ3, (3.37)

where γ0 and γ3 are members of the standard Weyl or chiral representation of γ matri-

ces [23] in Minkwoski spacetime, expressed as

γ0 =

(

0 I

−I 0

)

γ3 =

(

0 σ3

σ3 0

)

. (3.38)

Using (3.34), (3.36) and (3.37) the equation of motion (3.35) is simplified as,

iγt∂tψ + iγr∂rψ +
f ′(r)g(r)

2f(r)
γtΣrtψ = 0, (3.39)
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where

Σrt =
i

2

√

f(r)

g(r)











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1











. (3.40)

The spin up (+ ve ‘r’ direction) and spin down (- ve ‘r’ direction) ansatz for the Dirac

field have the following forms respectively,

ψ↑(t, r) =











A(t, r)

0

B(t, r)

0











exp

[

i

~
I↑(t, r)

]

(3.41)

and

ψ↓(t, r) =











0

C(t, r)

0

D(t, r)











exp

[

i

~
I↓(t, r)

]

. (3.42)

Here I↑(r, t) is the action for the spin up case and will be expanded in powers of ~. We shall

perform our analysis only for the spin up case since the spin down case is fully analogous.

On substitution of the ansatz (3.41) in (3.39) and simplifying, we get the following two

nonzero equations,

B(t, r)
[

∂tI↑(r, t) +
√

fg∂rI↑(r, t)
]

= 0 (3.43)

and

A(t, r)
[

∂tI↑(r, t) −
√

fg∂rI↑(r, t)
]

= 0. (3.44)

Now let us expand all the variables in the ‘r − t’ sector in powers of ~, as

I↑(r, t) = I(r, t) = I0(r, t) +
∑

i

~
iIi(r, t)

A(r, t) = A0(r, t) +
∑

i

~
iAi(r, t)

B(r, t) = B0(r, t) +
∑

i

~
iBi(r, t). (3.45)

Substituting all the terms from (3.45) into (3.43) and (3.44) yields (for a = 0, 1, 2 . . .)

Ba(r, t)
(

∂tIa(r, t) +
√

fg ∂rIa(r, t)
)

= 0

Aa(r, t)
(

∂tIa(r, t) −
√

fg ∂rIa(r, t)
)

= 0. (3.46)

Thus we have the following sets of solutions, respectively, for Ba’s 6= 0 and Aa’s 6= 0,

Set-I : ∂tIa(r, t) +
√

fg ∂rIa(r, t) = 0 (3.47)

Set-II : ∂tIa(r, t) −
√

fg ∂rIa(r, t) = 0. (3.48)
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Similar to the scalar particle tunneling here also one can separate the semiclassical action

for the ‘r − t’ sector as

I0(r, t) = −ωt+W0(r), (3.49)

where ω = (E−PφΩH). Substituting (3.49) in (3.47) and (3.48) for (a = 0) and integrating

we get

W±
0 (r) = ±ω

∫

C

dr
√

f(r)g(r)
(3.50)

and subsequently

I0(r, t) =

(

−ωt± ω

∫

C

dr
√

f(r)g(r)

)

, (3.51)

where + (-) sign implies that the particle is outgoing (ingoing). Because of the similar

structure of (3.47) and (3.48), for all (a = 0, 1, 2 . . .), the solutions for Ii(r, t)’ s can at most

differ by a proportionality factor from I0(r, t) and the most general solution for I(r, t) is

given by

I(r, t) =

(

1 +
∑

i

γi~
i

)(

−ωt± ω

∫

C

dr
√

f(r)g(r)

)

. (3.52)

This is an exact analogue of the scalar particle tunneling case (3.21) and one can check this

will lead to an identical expression of corrected Hawking temperature as given by (3.29)

and (3.31) by exactly mimicking the steps discussed there.

4 Exact differential and corrected area law

With the result of corrected Hawking temperature (3.29) we now proceed with the calcula-

tion of the corrected entropy and area law. The modified form of first law of thermodynam-

ics for Kerr-Newman black hole in the presence of corrections to Hawking temperature is

dSbh =
dM

Tbh
+

(

−ΩH

Tbh

)

dJ +

(

−ΦH

Tbh

)

dQ. (4.1)

In this context we want to stress that,

• Entropy must be a state function for all stationary spacetimes even in the presence

of the quantum corrections to the semiclassical value.

This implies that dSbh has to be an exact differential. In the expression for Tbh in (3.29)

there are six undetermined coefficients (a1 to a6) present in HKN (3.18). The first step in

the analysis is to fix these coefficients in such a way that dSbh in (4.1) remains an exact

differential. By this restriction we make the corrected black hole entropy independent of

any collapse process. For (4.1) to be an exact differential the following relations must hold:

∂

∂J

(

1

Tbh

)∣

∣

∣

∣

M,Q

=
∂

∂M

(

−ΩH

Tbh

)∣

∣

∣

∣

J,Q

(4.2)

∂

∂Q

(

−ΩH

Tbh

)∣

∣

∣

∣

M,J

=
∂

∂J

(

−ΦH

Tbh

)∣

∣

∣

∣

M,Q

(4.3)

∂

∂M

(

−ΦH

Tbh

)∣

∣

∣

∣

J,Q

=
∂

∂Q

(

1

Tbh

)∣

∣

∣

∣

J,M

. (4.4)
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Using the expression of Tbh from (3.29) and the semiclassical result from (2.6), the first

condition (4.2) reduces to

∂

∂J

∑

i

βi~
i

H i
KN

∣

∣

∣

∣

∣

M,Q

= −ΩH
∂

∂M

∑

i

βi~
i

H i
KN

∣

∣

∣

∣

∣

J,Q

(4.5)

Expanding this equation in powers of ~, one has the following equality

∂HKN

∂J

∣

∣

∣

∣

M,Q

= −ΩH
∂HKN

∂M

∣

∣

∣

∣

J,Q

. (4.6)

Similarly the other two integrability conditions (4.3) and (4.4) lead to other condi-

tions on HKN,

∂HKN

∂Q

∣

∣

∣

∣

M,J

=

(

ΦH

ΩH

)

∂HKN

∂J

∣

∣

∣

∣

M,Q

(4.7)

∂HKN

∂M

∣

∣

∣

∣

J,Q

= − 1

ΦH

∂HKN

∂Q

∣

∣

∣

∣

J,M

(4.8)

respectively. The number of unknown coefficients present in HKN is six and we have only

three equations involving them, so the problem is under determined.

As a remedy to this problem let us first carry out the dimensional analysis for Kerr

spacetime and then use the result to reduce the arbitrariness in HKN. For Q = 0 the

Kerr-Newman metric reduces to the rotating Kerr spacetime and one can carry the same

analysis to find the corrections to Hawking temperature for both scalar particle and fermion

tunneling from Kerr spacetime. An identical calculation will be repeated with Q = 0.

The only difference will appear in the dimensional analysis (3.18). Since Kerr metric is

chargeless the most general expression for corrected Hawking temperature will come out as

Tbh = T

(

1 +
∑

i

βi
~

i

H i
K

)−1

, (4.9)

where HK is now given by

HK = HKN(Q = 0) = a1r
2
+ + a2Mr+ + a3M

2. (4.10)

The first law of thermodynamics for Kerr black hole is

dS =
dM

TH
+

(

−ΩH

TH

)

dJ, (4.11)

where TH and ΩH for Kerr black hole are obtained from their corresponding expressions

for the Kerr-Newman case, for Q = 0, as given in appendix A. With these expressions one

can easily check that dS is an exact differential for Kerr black hole as well since the only

integrability condition
∂

∂J

(

1

TH

)∣

∣

∣

∣

M

=
∂

∂M

(

−ΩH

TH

)∣

∣

∣

∣

J

(4.12)
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is satisfied. As stated earlier the idea behind introducing the Kerr spacetime is to carry

out the dimensional analysis for Kerr spacetime first, then demanding that for Q = 0 the

dimensional parameter HKN will be same as HK. The form of first law for Kerr black hole

in presence of corrections to the Hawking temperature, is given by

dSbh =
dM

Tbh
+

(

−ΩH

Tbh

)

dJ, (4.13)

where the general form of Tbh is given in (4.9). Now demanding that the corrected entropy

of Kerr black hole must be a state function, the following integrability condition

∂

∂J

(

1

Tbh

)∣

∣

∣

∣

M

=
∂

∂M

(

−ΩH

Tbh

)∣

∣

∣

∣

J

(4.14)

must hold. Using the semiclassical result from (4.12) and considering corrections to all

orders in ~ to the Hawking temperature in (4.9) it follows that the above integrability

condition is satisfied if the following relation holds

∂HK

∂J

∣

∣

∣

∣

M

= −ΩH
∂HK

∂M

∣

∣

∣

∣

J

. (4.15)

From (4.10) it follows that this equality holds only for

a1 = 0 = a3 (4.16)

and the form of HK is given by

HK = a2Mr+. (4.17)

Therefore, the corrected form for the Hawking temperature obeying the integrability

condition (4.14) for the Kerr black hole is given by

Tbh = TH

(

1 +
∑

i

βi~
i

(a2Mr+)i

)−1

= TH

(

1 +
∑

i

β̃i~
i

(Mr+)i

)−1

. (4.18)

The natural expectation from the dimensional term (HKN) in (3.18) is that for Q = 0

it gives the correct dimensional term (HK) in (4.17). To fulfil this criterion we must have

a1 = 0 = a3 in (3.18) and this leads to

HKN = a2Mr+ + a4r+Q+ a5MQ+ a6Q
2

= a2(Mr+ + ã4r+Q+ ã5MQ+ ã6Q
2), (4.19)

where ãj =
aj

a2
. Now we are in a position to find the precise form of the dimensional term

(HKN) satisfying the integrability conditions given in (4.6), (4.7) and (4.8). Note that with

the modified expression (4.19) the problem of under determination of six coefficients by only

three integrability conditions for Kerr-Newman spacetime has been removed. With this

expression of HKN one has effectively three undetermined coefficients with three equations
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and it is straightforward to calculate those coefficients. Putting the new expression of HKN

in (4.6), (4.7) and (4.8) one obtains,

ã5 − ã4
r+
M

= 0 (4.20)

2ã6Q+ ã4

(

Mr+ +Q2

M

)

+ ã5M = −Q (4.21)

2ã6Q+ ã4

(

r+ +
J2Q2

M3(r2+ + J2/M2)

)

+ ã5

(

M +
Q2r+

r2+ + J2/M2

)

= −Q. (4.22)

The simultaneous solution of these three equations yields,

ã4 = 0 = ã5

ã6 = −1

2
. (4.23)

As a result the final form of HKN derived by the requirements:

(i) HKN must satisfy the integrability conditions (4.6), (4.7), (4.8),

(ii) HKN = HK for Q = 0,

is given by

HKN = a2

(

Mr+ − 1

2
Q2

)

. (4.24)

Hence the corrected Hawking temperature for Kerr-Newman black hole is found to be

Tbh = T

(

1 +
∑

i

βi~
i

ai
2(Mr+ − Q2

2 )i

)−1

= T

(

1 +
∑

i

β̃i~
i

(Mr+ − Q2

2 )i

)−1

, (4.25)

where β̃i = βi

ai
2

.

We are now in a position to compute the corrected entropy and find the deviations

from the semiclassical area law. Comparing (2.9) and (4.1) with Tbh given above we find a

similar dictionary as (2.14) by modifying semiclassical terms with corrected versions, where

necessary, as

(f → Sbh, x→M, y → J, z → Q)

(U → 1

Tbh
, V → −ΩH

Tbh
, W → −ΦH

Tbh
). (4.26)

Following this dictionary and (2.11), (2.12) and (2.13) the corrected entropy for Kerr-

Newman black hole has the form

Sbh =

∫

dM

Tbh
+

∫

XdJ +

∫

Y dQ, (4.27)

where

X =

(

−ΩH

Tbh

)

− ∂

∂J

∫

dM

Tbh
(4.28)

and

Y =

(

−ΦH

Tbh

)

− ∂

∂Q

[∫

dM

Tbh
+

∫

XdJ

]

. (4.29)
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It is possible to calculate Sbh analytically up to all orders of ~. However we shall restrict our-
selves up to second order correction to the Hawking temperature. Integration overM yields,

∫

dM

Tbh

=
π

~
(2Mr+ −Q2)+2πβ̃1~ log(2Mr+ −Q2)− 4πβ̃2~

2

(2Mr+ −Q2)2
+const.+higher order terms.

(4.30)

With this result of integration one can check the following relation,

∂

∂J

∫

dM

Tbh
= −ΩH

Tbh
. (4.31)

Therefore X = 0. Furthermore we get

∂

∂Q

∫

dM

Tbh
= −ΦH

Tbh
, (4.32)

and using this equality together with X = 0 we find Y = 0. The fact that both X and

Y pick the most trivial solution as zero in the black hole context, both with or without

quantum corrections, is quite unique. The final result for the entropy of the Kerr-Newman

black hole in presence of quantum corrections is now given by

Sbh =
π

~
(2Mr+−Q2)+2πβ̃1 log(2Mr+−Q2)− 4πβ̃2~

(2Mr+−Q2)
+const.+higher order terms.

(4.33)

In terms of the semiclassical black hole entropy and horizon area this can be expressed,

respectively, as

Sbh = SBH + 2πβ̃1 log SBH − 4π2β̃2

SBH
+ const. + higher order terms. (4.34)

and

Sbh =
A

4
+ 2πβ̃1 logA− 16π2β̃2

A
+ const. + higher order terms. (4.35)

The first term in the expression (4.34) is the usual semiclassical Bekenstein-Hawking en-

tropy and the other terms are due to quantum corrections. The logarithmic and inverse area

terms have appeared as the leading and non leading corrections to the entropy and area law.

5 Determination of the leading correction to entropy by trace anomaly

In the expression for entropy in (4.35) the leading order correction includes an arbitrary

coefficient β̃1. In this section we shall determine this coefficient by using trace anomaly.

Consider the scalar particle tunneling case. The expression for the action for the

Kerr-Newman spacetime is given by (3.19)

S(r, t) =

(

S0(r, t) +
∑

i

~
iSi(r, t)

)

=






S0(r, t) +

∑

i

β̃i~
i

(

Mr+ − Q2

2

)i
S0(r, t)






, (5.1)
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where the appropriate form for HKN from (4.24) is considered. Taking the first order (~)

correction in this equation we can write the following relation for the imaginary part of the

outgoing particle action

ImSout
1 (r, t) =

β̃1
(

Mr+ − Q2

2

)ImSout
0 (r, t). (5.2)

The imaginary part for the semiclassical action for an outgoing particle can be found

from (3.15), (3.20) and (3.26) as

ImSout
0 (r, t) = −2ωIm

∫

C

dr
√

f(r)g(r)
. (5.3)

Let us make an infinitesimal scale transformation of the metric coefficients in (3.6)

parametrized by the constant factor ‘k’ [17, 27] such that f̄(r) = kf(r) ≃ (1 + δk)f(r) and

ḡ(r) = k−1g(r) ≃ (1 + δk)−1g(r). From the scale invariance of the Klein-Gordon equation

in (3.8) it follows that the Klein-Gordon field (Φ) should transform as Φ = k−1Φ. Since

Φ has a dimension of mass, one interprets that the black hole mass (M) should transform

as M = k−1M ≃ (1 + δk)−1M under the infinitesimal scale transformation. Therefore the

other two black hole parameters (Q, a) and the particle energy ω should also transform

as M does. Using these it is straightforward to calculate the transformed form of (5.2)

and (5.3) to get

ImSout
1 (r, t) =

β̃1
(

Mr+ − Q
2

2

)ImSout
0 (r, t) =

β̃1
(

Mr+ − Q2

2

)(1 + δk)ImSout
0 (r, t), (5.4)

and
δImSout

1 (r, t)

δk
=

β̃1
(

Mr+ − Q2

2

)ImSout
0 (r, t). (5.5)

Now considering the scalar field Lagrangian it can be shown that under a constant scale

transformation of the metric coefficients the action is not invariant in the presence of trace

anomaly and this lack of conformal invariance is given by the following relation

δS(r, t)

δk
=

1

2

∫

d4x
√−g(< T µ

µ >
(1) + < T µ

µ >
(2) + . . .), (5.6)

where < T µ
µ >(i)’ s are the trace of the regularised stress energy tensor calculated for i-th

loop. However, in the literature [27, 28], only the first order loop calculation has been

carried out and this gives

δImSout
1 (r, t)

δk
=

1

2
Im

∫

d4x
√
−g(< T µ

µ >
(1)), (5.7)

where, for a scalar background, the form of trace anomaly is given by

< T µ
µ >

(1)=
1

2880π2
(RµνρσR

µνρσ −RµνR
µν + ∇µ∇µR) (5.8)
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Now integrating (5.3) around the pole at r = r+ we get

ImSout
0 (r, t) = −2πω

(

r+M − Q2

2

)

(r+ −M)
(5.9)

Now putting this in (5.5) and comparing with (5.7) we find

β̃1 = −

(

M2 −Q2 − J2

M2

)1/2

4πω
Im

∫

d4x
√−g < T µ

µ >
(1). (5.10)

Equation (5.10) gives the general form of the coefficient associated with the leading correc-

tion to the semiclassical entropy for any stationary black hole. To get β̃1 for a particular

black hole in (3+1) dimensions one needs to solve both (5.10) and (5.8) for that black hole.

Now we shall take different spacetime metrics and explicitly calculate β̃1 for them.

5.1 Schwarzschild black hole

For Q = 0 = J the Kerr-Newman spacetime metric reduces to the Schwarzschild spacetime

and from (5.10) it follows that

β̃1 = − M

4πω
Im

∫

d4x
√−g < T µ

µ >
(1). (5.11)

The identification of particle energy by (3.16) is now given by ω = E, where ‘E’ is the Ko-

mar conserved quantity corresponding the timelike Killing vector ∂
∂t for the spherically sym-

metric Schwarzschild spacetime. An exact calculation [26] of the Komar integral gives E =

M (see appendix B), where M is the mass of Schwarzschild black hole. Therefore we get

β̃1 = − 1

4π
Im

∫

d4x
√−g < T µ

µ >
(1). (5.12)

A similar result was found by Hawking [27], where the path integral approach based on

zeta function regularization was adopted. The path integral for standard Einstein-Hilbert

gravity was modified due to the fluctuations coming from the scalar field in the black

hole spacetime.

To find the trace anomaly of the stress tensor (5.8) we calculate the following invariant

scalars for Schwarzschild black hole, given by

RµνρσR
µνρσ =

48M2

r6
,

RµνR
µν = 0

R = 0. (5.13)

Using these we can find < T µ
µ >(1) from (5.8) and inserting it in (5.12) yields,

β̃
(Sch)
1 = − 1

4π

1

2880π2
Im

∫ ∞

r=2M

∫ π

θ=0

∫ 2π

φ=0

∫ −8πiM

t=0

48M2

r6
r2 sin θdrdθdφdt

=
1

180π
. (5.14)
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The corrected entropy/area law (4.34), (4.35) is now given by,

S
(Sch)
bh = SBH +

1

90
logSBH + higher order terms,

=
A

4
+

1

90
logA+ higher order terms. (5.15)

This reproduces the result existing in the literature [9, 17, 27].

5.2 Reissner-Nordstrom black hole

For the Reissner-Nordstrom black hole, putting J = 0 in (5.10), we get

β̃1 = −(M2 −Q2)1/2

4πω
Im

∫

d4x
√−g < T µ

µ >
(1), (5.16)

where the particle energy is again given by the Komar energy integral corresponding to the

timelike Killing field ∂
∂t . Unlike the Schwarzschild case, however, the effective energy for

Reissner-Nordstrom black hole observed at a distance r, is now given by (see appendix B),

ω = E =

(

M − Q2

r

)

. (5.17)

For a particle undergoing tunneling r = r+ = (M +
√

M2 −Q2), we get ω = (M2 −Q2)1/2

and therefore (5.16) gives

β̃1 = − 1

4π
Im

∫

d4x
√−g < T µ

µ >
(1). (5.18)

This has exactly the same functional form as (5.12). To calculate this integral, we first

simplify the integrand given in (5.8), for a Reissner-Nordstrom black hole,

RµνρσR
µνρσ =

8(7Q4 − 12MQ2r + 6M2r2)

r8
,

RµνR
µν =

4Q4

r8
,

R = 0. (5.19)

With these results < T µ
µ >(1) is obtained and, finally,

β̃
(RN)
1 = − 1

4π

1

2880π2
Im

∫ ∞

r=r+

∫ π

θ=0

∫ 2π

φ=0

∫ −iβ

t=0
< T µ

µ >
(1) r2 sin θdrdθdφdt

=
1

180π
(1 +

3

5

r2−
r2+ − r+r−

). (5.20)

Therefore the corrected entropy/area law for a Reissner-Nordstrom black hole is now given

by (see (4.34), (4.35))

S
(RN)
bh = SBH +

1

90

(

1 +
3

5

r2−
r2+ − r+r−

)

log SBH + higher order terms.

=
A

4
+

1

90

(

1 +
3

5

r2−
r2+ − r+r−

)

logA+ higher order terms. (5.21)
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Unlike the Schwarzschild black hole here the prefactor of the logarithmic term is not a

pure number. This is because the presence of charge on the outer region of the event

horizon includes a contribution to the matter sector. Therefore the charge (Q) directly

affects the dynamics of the system which in turn is related to entropy. It is interesting to

see that in the extremal limit the prefactor of the logarithmic term blows up, suggesting

that there cannot be a smooth limit from non-extremal to the extremal case. This is

in agreement with a recent paper [29] where it is argued that the extremal limit of the

Reissner-Nordstrom black hole is different from the extremal case itself. For the extremal

case the region between inner and outer horizons disappears but in the extremal limit this

region no longer disappears, rather it approaches a patch of AdS2 × S2. As a result the

non-extremal to extremal limit is not continuous.

5.3 Kerr black hole

The Kerr black hole is the chargeless limit of the Kerr-Newman black hole. This is an

axially symmetric solution of Einstein’s equation and has two Killing vectors ∂
∂t and ∂

∂φ .

Therefore it has two conserved quantities corresponding to those Killing directions. None

of the Killing vectors is individually time-like, but the combination ( ∂
∂t + Ω ∂

∂φ) is time-like

throughout the spacetime (outside the event horizon). This combination however cannot

be treated as a Killing vector because in general Ω is not constant. At the horizon Ω = ΩH

is identified as the angular velocity of the horizon and the above time-like vector becomes

null. This time-like vector plays a crucial role in the process of evaluating Komar integrals.

For a Kerr black hole (5.10) reduces to

β̃1 = −

(

M2 − J2

M2

)1/2

4πω
Im

∫

d4x
√−g < T µ

µ >
(1) (5.22)

where ω = (E − ΩHPφ). In the Boyer-Lindquist coordinate, the Komar integrals corre-

sponding to the Killing vectors ∂
∂t and ∂

∂φ are given by E = M and Pφ = 2J respec-

tively [30]. Here M and J are respectively the mass and angular momentum of the Kerr

black hole. Using these expressions together with the angular velocity (ΩH) (see ap-

pendix B) we get ω = (M2 − J2

M2 )1/2 and therefore (5.22) becomes

β̃1 = − 1

4π
Im

∫

d4x
√−g < T µ

µ >
(1) (5.23)

which is exactly same as the other two previous cases. The invariant scalars for Kerr

spacetime are given by

RµνρσR
µνρσ = −96M2

(

α1 + 15α2 cos 2θ + 6a4(a2 − 10r2) cos 4θ + a6 cos 6θ
)

(a2 + 2r2 + a2 cos 2θ)6
,

α1 = (10a6 − 180a4r2 + 240a2r4 − 32r6),

α2 = (a4 − 16a2r2 + 16r4)

RµνR
µν = 0

R = 0, (5.24)
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from which the trace < T µ
µ >( 1) in (5.8)is obtained. Now performing the integration we get

β̃
(K)
1 = − 1

4π

1

2880π2
Im

∫ ∞

r=r+

∫ π

θ=0

∫ 2π

φ=0

∫ −iβ

t=0
< T µ

µ >
(1) r2 sin θdrdθdφdt

=
1

180π
. (5.25)

Therefore the corrected entropy/area law for a Kerr black hole that follows

from (4.34), (4.35) is given by,

S
(K)
bh = SBH +

1

90
log SBH + higher order terms,

=
A

4
+

1

90
logA+ higher order terms. (5.26)

This result is identical to the Schwarzschild black hole. This can be physically explained

by the following argument. The difference between the Schwarzschild and Kerr spacetimes

is due to spin(J). Unlike charge (Q), which has a contribution to the matter part, spin

is arising in Kerr spacetime because of one extra Killing direction corresponding to the

Killing field (∂φ). This difference is purely geometrical and has nothing to do with the

dynamics of the system and as a result there is no difference between the structure of

corrected entropy in these two cases.

5.4 Kerr-Newman black hole

The general expression for β̃1 in (5.10) involves the total energy of the tunneling particle,

given by (3.16). Unlike the Kerr black hole, in this case the effective energy faced by a

particle at a finite distance from the horizon is not the same as felt at infinity. Because of the

presence of electric charge (Q) it is modified. This was also the case for Reissner-Nordstrom

black hole where one extra term (−Q2

r ) arose in (5.17) due to the charge of the black hole.

However, for Kerr-Newman black hole, because of its geometric structure the calculation of

the extra contributions due to charge is technically more involved. Similar conclusions hold

for the other conserved quantity Pφ. On the other hand to get the exact form of total energy

of the tunneling particle one needs to calculate both E and Pφ in a closed form. In an earlier

work [31] the closed form of E was derived from the Komar integral but the explicit closed

form calculation of Pφ from the Komar integral is still missing. For our analysis we have

calculated the Komar integrals upto leading correction to both E and Pφ (see appendix B)

E = M − Q2

r
+ O

(

1

r2

)

Pφ = 2

(

J − 2Q2a

3r

)

+ O
(

1

r2

)

(5.27)

Putting this (with r = r+) in (3.16) and taking upto the O( 1
r+

) we get

ω = (M2 −Q2 − J2

M2 )1/2. Therefore for the leading order we find β̃1 as,

β̃1 = − 1

4π
Im

∫

d4x
√−g < T µ

µ >
(1), (5.28)
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which is identical to the previous expressions. For now we shall take (5.28) and perform the

integral to find β̃1 for Kerr-Newman black hole. The invariant scalars for Kerr-Newman

black holes are given by

RµνρσR
µνρσ =

128

(a2 + 2r2 + a2 cos 2θ)6
[

192r4(Q2 − 2mr)2 − 96r2(Q2 − 3mr)(Q2 − 2mr)(a2 + 2r2 + a2 cos 2θ))

+(7Q2 − 18mr)(Q2 − 6mr)(a2 + 2r2 + a2cos2θ)2

−3m2(a2 + 2r2 + a2 cos 2θ)3)
]

,

RµνR
µν =

64Q4

(a2 + 2r2 + a2 cos 2θ)4
,

R = 0. (5.29)

Simplifying < T µ
µ >(1) in (5.8) and performing the integration in (5.28) one finds

β̃KN
1 =

r2+ + r+r− −Q2

5760πr4+(r+ − r−)(r+r− −Q2)5/2

(

α1 +
r+
√

r+r− −Q2

r2+ + r+r− −Q2
(9Q8 − α2r+ + α3r

2
+r

2
−

)

)

(5.30)

with

α1 = 9Q4

[

r4+ tan−1

(

r+
√

−Q2 + r−r+

)

+ (Q2 − r−r+)2 cot−1 r+
√

−Q2 + r−r+

]

α2 = 6Q6r+ − 41Q4r3+ + 32r4+r
3
− + 2Q2r−(9Q4 + 13q2r2+ + 32r4+)

α3 = 9Q4 + 64Q2r2+ + 32r4+.

The corrected entropy/area law now follows from (4.34) and (4.35),

S
(KN)
bh = SBH +

r2+ + r+r− −Q2

2880r4+(r+ − r−)(r+r− −Q2)5/2

(

α1 +
r+
√

r+r− −Q2

r2+ + r+r− −Q2

× (9Q8 − α2r+ + α3r
2
+r

2
−)

)

log SBH + higher order terms.

=
A

4
+

r2+ + r+r− −Q2

2880r4+(r+ − r−)(r+r− −Q2)5/2

(

α1 +
r+
√

r+r− −Q2

r2+ + r+r− −Q2

× (9Q8 − α2r+ + α3r
2
+r

2
−)

)

logA+ higher order terms. (5.31)

For Q = 0 the above prefactor of the logarithmic term reduces to 1
90 , the coeffecient for

the Kerr spacetime.

6 Conclusions

Let us now summarise the findings in the present paper. We have given a new and simple

approach to derive the “first law of black hole thermodynamics” from the thermodynamical

perspective where one does not require the “first law of black hole mechanics”. The key
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point of this derivation was the observation that “black hole entropy” is a state function.

In the process we obtained some relations involving black hole entities, playing a role

analogous to Maxwell’s relations, which must hold for any stationary black hole. Based

on these relations, we presented a systematic calculation of the semiclassical Bekenstein-

Hawking entropy taking into account all the “work terms on a black hole”. This approach

is applicable to any stationary black hole solution. The standard semiclassical area law

was reproduced. An interesting observation that has been come out of the calculation was

that the work terms did not contribute to the final result of the semiclassical entropy.

To extend our method for calculating entropy in the presence of quantum corrections

we first computed the corrected Hawking temperature in the tunneling mechanism. Both

the tunneling of scalar particles and fermions were considered and they gave the same result

for the corrected Hawking temperature. However this result involved a number of arbitrary

constants. Demanding that the corrected entropy be a state function it was possible to find

the appropriate form of the corrected Hawking temperature. By using this result we explic-

itly calculated the entropy with quantum corrections. In the process we again found that

work terms on black hole did not contribute to the final result of the corrected entropy. This

analysis was done for the Kerr-Newman spacetime and it was trivial to find the results for

other stationary spacetimes like (i) Kerr, (ii) Reissner-Nordstrom and (iii) Schwarzschild by

taking appropriate limits. It is important to note that the functional form for the corrected

entropy is same for all the stationary black holes. The logarithmic and inverse area terms as

leading and next to leading corrections were quite generic upto a dimensionless prefactor.

It was shown that the coefficient of the logarithmic correction was related with the

trace anomaly of the stress tensor and explicit calculation of this coefficient was also done.

This was a number ( 1
90) for both Schwarzschild and Kerr black hole. The fact that both

Kerr and Schwarzschild black holes have identical corrections was explained on physical

grounds (the difference between the metrics being purely geometrical and not dynamical)

thereby serving as a nontrivial consistency check on our scheme. It may be noted that the

factor ( 1
90 ) was also obtained (for the Schwarzschild case) in other approaches [9, 27] based

on the direct evaluation of path integrals in a scalar background. For the charged spacetime

(Reissner-Nordstrom and Kerr-Newman) the coefficients were not pure numbers, however in

the Q = 0 limit they reproduced the expressions for the corresponding chargeless versions.
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A Glossary of formulae for Kerr-Newman black hole

The spacetime metric of the Kerr-Newman black hole in Boyer-Linquist coordinates

(t, r, θ, φ) is given by,

ds2 = −f̃(r, θ)dt2 +
dr2

g̃(r, θ)
− 2H(r, θ)dtdφ +K(r, θ)dφ2 + Σ(r, θ)dθ2 (A.1)

with the electromagnetic vector potential,

Aa = − Qr

Σ(r, θ)
[(dt)a − a sin2 θ(dφ)a]

and,

f̃(r, θ) =
∆(r) − a2 sin2 θ

Σ(r, θ)

g̃(r, θ) =
∆(r)

Σ(r, θ)
,

H(r, θ) =
a sin2 θ(r2 + a2 − ∆(r))

Σ(r, θ)

K(r, θ) =
(r2 + a2)2 − ∆(r)a2 sin2 θ

Σ(r, θ)
sin2(θ)

Σ(r, θ) = r2 + a2 cos2 θ

∆(r) = r2 + a2 +Q2 − 2Mr

a =
J

M
(A.2)

The Kerr-Newman metric represents the most general class of stationary black hole

solution of Einstein-Maxwell equations having all three parameters Mass (M), Angular

momentum (J) and Charge (Q). All other known stationary black hole solutions are

encompassed by this three parameter solution.

(i)For Q = 0 it gives the rotating Kerr solution, (ii) J = 0 leads to the Reissner-Nordstrom

black hole, and (iii) for both Q = 0 and J = 0 the standard Schwarzschild solution

is recovered.

For the non-extremal Kerr-Newman black hole the location of outer (r+, event) and inner

(r−) horizons are given by setting grr = 0 = gtt or equivalently ∆ = 0, which gives

r± = M ±
√

M2 − a2 −Q2. (A.3)

The angular velocity of the event horizon, which follows from the general expression of

angular velocity for any rotating black hole, is given by

ΩH =



− gφt

gφφ
−
√

(

gtφ

gφφ

)2

− gtt

gφφ





r=r+

=
a

r2+ + a2
. (A.4)
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The electric potential at the event horizon is given by,

ΦH =
r+Q

r2+ + a2
. (A.5)

The area of the event horizon is given by,

A =

∫

r+

√
gθθgφφdθdφ = 4π(r2+ + a2) (A.6)

The semiclassical Hawking temperature in terms of surface gravity (κ) of the Kerr-Newman

black hole is given by

TH =
~κ

2π
=

~

2π

(r+ −M)

(r2+ + a2)
. (A.7)

Using (A.3), (A.4), (A.5) and (A.7) one can find the following quantities,

1

TH
=

2π

~









2M

[

M +
(

M2 − J2

M2 −Q2
)1/2

]

−Q2

(

M2 − J2

M2 −Q2
)1/2









, (A.8)

−ΩH

TH
= −2πJ

~M







1
(

M2 − J2

M2 −Q2
)1/2






, (A.9)

−ΦH

TH
= −

2πQ

[

M +
(

M2 − J2

M2 −Q2
)1/2

]

~

(

M2 − J2

M2 −Q2
)1/2

. (A.10)

B Komar conserved quantities

The Komar integral gives the conserved quantity corresponding to a Killing vector field.

We take the following definition for the conserved quantities corresponding to the Killing

fields ∂t and ∂φ in Kerr-Newman spacetime, respectively, as2

E =
1

4π

∫

∂Σ
d2x

√

γ(2)nµσν∇µKν (B.1)

and

Pφ = − 1

4π

∫

∂Σ
d2x

√

γ(2)nµσν∇µRν. (B.2)

The above two integrals are defined on the boundary (∂Σ) of a spacelike hypersurface Σ and

γij is the induced metric on ∂Σ. Also, nµ and σν are unit normal vectors associated with

Σ and ∂Σ respectively, whereas, Kµ and Rν are timelike and rotational Killing vectors.

For the spherically symmetric spacetime (Schwarzschild and Reissner-Nordstrom) there

is only one Killing vector (∂t) and correspondingly only one conserved quantity given

by (B.1) ESch = M and ERN = (M − Q2

r ) respectively.

2 Our normalisation for Pφ is consistent with [30].
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For the Kerr spacetime, in Boyer-Linquist coordinates (t, r, θ, φ), EK = M

and PK
φ = 2J .

For the Kerr-Newman black hole, in the evaluation of (B.1) and (B.2), there will

be extra contributions due to charge (Q) [31]. A closed form expression for PKN
φ is

not available. Calculating upto the leading O(1
r ) we obtain EKN = (M − Q2

r ) and

PKN
φ = 2(J − 2Q2a

3r ).
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